A Statistical Learning Framework for Exploring Tumor Spatial Architecture from Spatially Resolved Transcriptomic Data.
Here, we introduce SpaTopic, a versatile statistical learning framework that harmonizes spatial clustering and cell-type deconvolution by integrating single-cell transcriptomics and SRT data. The objective of SpaTopic is to identify spatial clusters of spots within the SRT data, characterized by homogenous gene expression and cell-type organization. Each unique cluster of spots is viewed as a distinct spatial domain, presenting discernible patterns that set it apart from other clusters. SpaTopic significantly aids in the characterization of spatial domains, capitalising on the contributions from their corresponding cell-type topics. This enables the quantitative comparison of spatial domains and the identification of spatial regions prevalent across various SRT datasets. SpaTopic is implemented as an open-source R package, freely available at https://github.com/compbioNJU/SpaTopic.
Installation
SpaTopic is implemented as an R package, which can be installed from GitHub.
Dependencies
- R (≥ 3.5.0)
- testthat (>= 3.0.0)
- R packages: modeltools, slam, stats, topicmodels
** Install devtools if necessary **
install.packages('devtools')
Install SpaTopic
devtools::install_github('compbioNJU/SpaTopic')
Load package
Issues
All feedback, bug reports and suggestions are warmly welcomed! Please make sure to raise issues with a detailed and reproducible exmple and also please provide the output of your sessionInfo() in R!
How to use SpaTopic
This tutorial is the example analysis with SpaTopic on the human pancreatic ductal adenocarcinomas data from Moncada et al, 2020. Before runing the tutorial, make sure that the SpaTopic package is installed. Installation instructions see the Installation. See more at https://compbioNJU.github.io/SpaTopic/.
load the data
1:5,1:5]
spot_clusters[
row col sizeFactor cluster.init spatial.cluster10 10 4.7761108 1 2
10x10 10 13 1.0052199 2 2
10x13 10 14 0.8106812 2 2
10x14 10 15 0.4987377 2 2
10x15 10 16 0.4346143 2 2
10x16
1:5,1:5]
spot_celltype[
Acinar_cells Ductal_cells Cancer_clone_A Cancer_clone_B DCs5.838572e-02 0.2349066 1.365076e-03 3.892868e-04 0.165860789
10x10 4.807943e-05 0.9984677 1.654640e-06 9.032885e-06 0.001244634
10x13 4.701190e-02 0.8373601 4.846860e-03 9.009235e-04 0.003541947
10x14 5.047613e-02 0.8020465 1.911570e-04 3.325224e-02 0.084113110
10x15 4.694120e-03 0.9718078 1.719378e-06 6.266388e-04 0.007665514 10x16
use SpaTopic to the spot_celltype and spot_clusters
#result_list: A list with three data frame and one vector.
#MetaTopic is a data frame which can be add to a Seurat object.
#The domain_topic is a data frame, row is CellTopic. and col is domain.
#The celltype_topic is a data frame, row is celltype and col is CellTopic.
#Cell_topic is a vector of which topic be chosen in each CellTopic.
#If meta.cell = TRUE, one more result will be given in result list, MetaTopic is a data frame of the cluster result of CellTopic.
result_list <- CellTopic(spot_celltype,spot_clusters,cluster = "spatial.cluster", num_topics = 13,percent = 0.7,
Binarization = FALSE, meta.cell = FALSE, k = NULL)
#show the result
head(result_list[["CellTopic"]])
CellTopic CellTopic1 CellTopic2 CellTopic3 CellTopic40.577382618544802 0.787303032098654 0.0080170243865711 0.0853445821596965
10x10 CellTopic2 0.577382618544802 0.787303032098654 0.0080170243865711 0.0853445821596965
10x13 CellTopic2 0.577382618544802 0.787303032098654 0.0080170243865711 0.0853445821596965
10x14 CellTopic2 0.577382618544802 0.787303032098654 0.0080170243865711 0.0853445821596965
10x15 CellTopic2 0.577382618544802 0.787303032098654 0.0080170243865711 0.0853445821596965
10x16 CellTopic2 0.577382618544802 0.787303032098654 0.0080170243865711 0.0853445821596965
10x17 CellTopic2
head(result_list[["domain_topic"]])
spot_domain_1 spot_domain_2 spot_domain_3 spot_domain_40.78207686 0.577382619 0.174953872 0.10799194
CellTopic1 0.44211741 0.787303032 0.007438506 0.06603564
CellTopic2 0.12712585 0.008017024 0.787181571 0.03422577
CellTopic3 0.05105707 0.085344582 0.018005238 0.78840065
CellTopic4
head(result_list[["celltype_topic"]])
CellTopic1 CellTopic2 CellTopic3 CellTopic40.04503436 0.03515437 5.404895e-02 0.17033144
Acinar_cells 0.11062714 0.14213899 3.273553e-06 0.02809054
Ductal_cells 0.03090381 0.02157599 1.770954e-01 0.01540925
Cancer_clone_A 0.02943409 0.01671419 1.662732e-01 0.01086386
Cancer_clone_B 0.07268275 0.06557971 2.767503e-02 0.14179855
DCs 0.06113322 0.04374492 5.155769e-02 0.14100323
Tuft_cells
head(result_list[["Cell_topic"]])
CellTopic1 CellTopic2 CellTopic3 CellTopic4 "3_11_4_5_7_2" "2_8_1_11_3" "9_12" "13_10"