Links showing cosine similarity between terms, calculated by topic~term probability matrix or GSEA result. Node pie shows topic distribution of each term or enrichment score distribution of each term.

cosine_network_term(
  SeuratObj,
  cosine_cal_by = "Topic modeling",
  pie_by = "Topic modeling",
  GSEA_by = "GO",
  topn = 10,
  layout = "fr",
  cos_sim_thresh = 0.8,
  SEED = 123,
  radius = 0.1,
  width_range = c(0.05, 0.55),
  text_size = 2
)

Arguments

SeuratObj

Object of class "Seurat"

cosine_cal_by

calculate cosine similarity by topic~term probability matrix or GSEA result. "Topic modeling", "GSEA result".

pie_by

what node pie shows. topic distribution or enrichment score distribution of each term. "Topic modeling", "GSEA result".

GSEA_by

using which GSEA result to run topic modeling, one of "GO", "KEGG", "Reactome", "MSigDb", "WikiPathways", "DO", "NCG", "DGN"

topn

top n terms of each topic or each cluster

layout

network layout

cos_sim_thresh

only shows edge of cosine similarity greater than specific threshold

SEED

seed

radius

node pie radius

width_range

range of width of edges

text_size

size of node labels

Value

ggplot object

Examples

if (FALSE) { cosine_network_term(SeuratObj, cosine_cal_by = "Topic modeling", pie_by = "Topic modeling", GSEA_by = "GO", topn = 10, layout = "fr", cos_sim_thresh = 0.8, radius = 0.1, text_size = 2) cosine_network_term(SeuratObj, cosine_cal_by = "GSEA result", pie_by = "GSEA result", GSEA_by = "GO") # edge(cosine similarity calculation) and node pie information could be different. cosine_network_term(SeuratObj, cosine_cal_by = "GSEA result", pie_by = "Topic modeling", GSEA_by = "GO") }