The CellFunTopic package provides a convenient
workflow for data pre-processing (quality control, normalization,
dimension reduction, clustering, differential expression analysis, etc.)
by integrating methods of Seurat
package.
CellFunTopic allows various types of input, including CellRanger
outputs, raw gene expression matrix, and popular R/python objects used
for single cell analysis such as SingleCellExperiment
,
Seurat
, CellDataSet
, AnnData
.
CellFunTopic will transform different input data into a
Seurat
object.
Let us use pbmc3k.final
as a toy example.
Then we can perform pre-processing conveniently. If users provide a pre-processed data, this step can be skipped.
SeuratObj <- CalMTpercent(SeuratObj, by = "use_internal_data")
SeuratObj <- QCfun(SeuratObj, plot = F) # set plot = T if you want to get the QC reports.
SeuratObj <- RunSeurat(SeuratObj, nPCs = 10, resolution = 1, plot = FALSE)
unique(Seurat::Idents(SeuratObj)) # see how many clusters we got.